3.455 \(\int \frac{\sec (c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=68 \[ \frac{\tanh ^{-1}(\sin (c+d x))}{a d}-\frac{2 b \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a d \sqrt{a-b} \sqrt{a+b}} \]

[Out]

(-2*b*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*Sqrt[a - b]*Sqrt[a + b]*d) + ArcTanh[Sin[c + d*x]
]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0722405, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {2747, 3770, 2659, 205} \[ \frac{\tanh ^{-1}(\sin (c+d x))}{a d}-\frac{2 b \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a d \sqrt{a-b} \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Cos[c + d*x]),x]

[Out]

(-2*b*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*Sqrt[a - b]*Sqrt[a + b]*d) + ArcTanh[Sin[c + d*x]
]/(a*d)

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{a+b \cos (c+d x)} \, dx &=\frac{\int \sec (c+d x) \, dx}{a}-\frac{b \int \frac{1}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a d}\\ &=-\frac{2 b \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a \sqrt{a-b} \sqrt{a+b} d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a d}\\ \end{align*}

Mathematica [A]  time = 0.0854344, size = 102, normalized size = 1.5 \[ \frac{\frac{2 b \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\sqrt{b^2-a^2}}-\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Cos[c + d*x]),x]

[Out]

((2*b*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] - Log[Cos[(c + d*x)/2] - Sin[(c +
 d*x)/2]] + Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/(a*d)

________________________________________________________________________________________

Maple [A]  time = 0.09, size = 88, normalized size = 1.3 \begin{align*} -{\frac{1}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{1}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-2\,{\frac{b}{da\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*cos(d*x+c)),x)

[Out]

-1/d/a*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a*ln(tan(1/2*d*x+1/2*c)+1)-2/d/a*b/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+
1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.58225, size = 643, normalized size = 9.46 \begin{align*} \left [-\frac{\sqrt{-a^{2} + b^{2}} b \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) -{\left (a^{2} - b^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (a^{2} - b^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{2 \,{\left (a^{3} - a b^{2}\right )} d}, -\frac{2 \, \sqrt{a^{2} - b^{2}} b \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (a^{2} - b^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (a^{2} - b^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{2 \,{\left (a^{3} - a b^{2}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(-a^2 + b^2)*b*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d
*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - (a^2 - b^2)*log(si
n(d*x + c) + 1) + (a^2 - b^2)*log(-sin(d*x + c) + 1))/((a^3 - a*b^2)*d), -1/2*(2*sqrt(a^2 - b^2)*b*arctan(-(a*
cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (a^2 - b^2)*log(sin(d*x + c) + 1) + (a^2 - b^2)*log(-sin(d
*x + c) + 1))/((a^3 - a*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c)),x)

[Out]

Integral(sec(c + d*x)/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.40241, size = 161, normalized size = 2.37 \begin{align*} -\frac{\frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )} b}{\sqrt{a^{2} - b^{2}} a} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c)
)/sqrt(a^2 - b^2)))*b/(sqrt(a^2 - b^2)*a) - log(abs(tan(1/2*d*x + 1/2*c) + 1))/a + log(abs(tan(1/2*d*x + 1/2*c
) - 1))/a)/d